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Abstract - In this paper, we are concerned with upper bounds of eigen-values on manifolds. 
Eigen-values have many applications in geometry and in other fields of mathematics. We 
develop a universal approach to upper bounds on both continuous and discrete structures 
based upon certain properties of the corresponding heat kernel. we start with a well-defined 
Laplace operator Δ on functions on M so that Δ is a self-adjoint operator in L2(M, +) with a 
discrete spectrum and a distance function dist(x, y) on M. 
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1 INTRODUCTION  
In this paper, let us consider  Laplace 
operator on smooth compact Riemannian 
manifold M, with metric g. since M has 
boundary ∂M, then we require in addition 
that g vanishes at the boundary. This 
defines the Laplacian with drichilet 
boundary condition .the Laplace operator 
is a self-adjoint operator, so by spectrum 
theorem there is a sequence of eigen-
values  
      0 ≤λ1 ≤ λ2 ≤ λ3 ≤ … 
And an orthogonal basis ф1, ф2,… of 
L2(M), which are eigenfuntions of Laplace 
operator. 
 
Laplacian Operator On Riemannian 
Manifold: 
The laplacian operator on a Riemannian 
manifold    (M , g) is a function defined as 
∆g : C∞ (M)→ C∞ (M) 

defined as∆g=  −divg . ∇g 

 

Since both ∇g and divg are linear operators 
it follows that for any ϕ, ψ ∈ C∞(M) 
Δg(ϕ + ψ) = Δgϕ+Δgψ. 
 
in addition we have 

Δg ϕ.ψ = ψΔgϕ + ϕΔgψ − 2 Δgϕ,  Δgψ   

 
Eigen Values of Laplace Operator On 
Manifold: 
Let M be a smooth connected compact 
Riemannian manifold and ∆ be a Laplace 
operator associated with the Riemannian 
metric i.e. in coordinates x1 , x2 , …, xn 
 
 
 
 
 

 
 
Where gij are contra-variant components 
of the metric tensor and g = det║gij║ and 
u is a smooth function on M.   
 
Theorem:    Suppose that we have chosen 
k+1 disjoint subsets X1, X2, …, XK+1 of M 
such that the distance between any pair 
of them is at least D > 0. Then for any k > 
1 
 
 
 
 
Proof:    The proof is based upon two 
fundamental facts about the heat kernel   
p(x, y, t)        being by definition the 
unique fundamental solution to heat 
equation  
 
 
 
 
With the boundary condition   
 
 
 
 
P(x, y, t) can be written in the form  
 
 
 
 
For any two disjoint Boral sets X, Y     M 
where    D = dist(X, Y).         

First we take the particular case k 
= 2. We start with integrating the 
eigenvalue expansion (2) as follows 
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 Let us denote by fi the Fourier coefficients 
of the function f1x with respect to the 
frame {фi} and by gi the Fourier 
coefficients of the function g1y .Then  
 
 
 
Where we used the fact that  
 
 
 
 
since 
 
 
 
 
Putting into (3)- 
 
 
 
 
From (5)- 
 
 
 
 
 
 
 
 
 
 
 
Let us choose 
 
 
 
 
Putting into (7) we get:  
 
 
 
 
 
 
 
 
 
 
Putting the value of t, 
  
 
 
 
Finally, we choose f = g = ф0  such that 

 
 
 
And 
 
 
Similarly 
 
 
 
Putting into (8) 
 
 
 
 
This implies: 
 
 
 
Now we turn to the general case k > 2 let 
us consider a function f(x) and denote by 
fij the ith Fourier coefficient of the function 
f1x i.e., 
 
 
 
 
 
 
Then we have the upper bound for Ilm( f, f) 
 
 
 
 
While we rewrite the lower bound (5) in 
another way: 
 
 
 
 
Now we want to kill the middle term on 
the right-hand side (11) by choosing 
appropriate l and m. 

Let us consider k+1 vectors fm= 
(f1m, f2m, …, fk-1

m)  M = 1, 2, …, k+1 in Rk-1 
and let us supply this  (k-1)-dimensional 
space with a scalar product given by  
 
 
 
Let us apply the following elementary fact: 
out of any k+1 vector in (k-1) dimensional 
Euclidean space there are always two 
vectors with non-negative scalar product. 
Therefore, we can find different l and m so 
that (fl ,fm) ≥ 0 and due to this choice we 
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are able to cancel the second term on the 
right hand side (11).  
 
Comparing (10) and (11) we get  
 
 
 
Now similar to the case k = 2 we choose t 
such that 
 
 
 
 
 
Putting the value of t into (12) we get, 
 
 
 
 
Therefore, 
 
 
 
 
 
Putting the value of t,  
 
 
 
 
Now we taking f = φ0 such that, 
 
 
 
 
And 

 
 
Similarly 
 
 
 
 
 
 
Putting into (13) we get, 
Thus for any two disjoint subset of M, we 
have 
 
 
 
 
What was to be proved. 
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